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In this paper an examination was made of how numerical minimization methods are effective in 
determining stationary points on energy hypersurfaces if semiempirical C N D O / 2 , I N D O and 
M I N D O / 2 methods are used. The amount of computer time is taken as the criterion of efficiency. 
Computer programs are reported that permit us, at relatively low cost, to determine equilibrium 
geometries of isomers and saddle points and to perform a vibrational analysis. 

Searching for the stationary points on energy hypersunaces represents a mathematical solution 
of various chemically interesiing problems. By the energy hypersurface we imply a function 
expressing the dependence of the total energy of a molecule on coordinates of atomic nuclei. 
Finding the local minima on the energy hypersurface (so-called geometry optimization) gives us 
the structures of stable isomers while the saddle points predict the structures of activated com-
plexes. Though the mathematical formulat ion of the problem presents no difficulties, its solution 
involves extensive computations. Recently several papers were p u b l i s h e d 1 - 1 8 which dealt with 
the numerical point of the problem with a greater or lesser success. Use has been made of 
empi r i ca l 1 ' 2 ' 1 8 , semiempir ica l 3 ' 4 ' 8 ~ 1 2 ' 1 4 _ 1 7 and nonempi r i ca l 5 ~ 1 methods. 

In the last several years an extensive study has been undertaken in our laboratory, 
in which the aim was to test the efficiency of numerical procedures published so far 
for the geometry optimization. The efficiency was judged with regard to the amount 
of computer time. The study resulted in two programs which permit effective solu-
tions of conformational problems and some chemical reactivity problems. At present, 
the utility of programs is tested for a series of molecules of various structural types. 
In the next papers the programs will be used for solving actual chemical problems. 

Optimization Procedures 

The most effective procedures used for a function minimization constitute the group of so 
called variable metric methods. These are iterative methods using the steepest descent in a first 
step. The Hessian matrix results in the course of computat ion which makes the procedure 
quadratically convergent. The iteration step is performed according to the following formula 

* i = * £ - i - a H i - J 1 g . _ 1 , (7) 

where a is a scalar so chosen that the term E(xi_1 — aHr_ 1
1 g i _ 1 ) is minimal. The individual 
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methods differ in a way of constructing the Hessian matrix. The oldest procedure of Davidon1 9 

improved by Fletcher and Powell20 makes use of the following formula 

H- 1 = H7_\ + q T q / C i _ z T z / c 2 5 (2) 

where q = xi — y = g. — gi_1, z = (H1~_1
1)Ty, cx = yTq, c2 = yrz. Other expressions 

were suggested by Murtagh and Sargent21 

»T1 = "7-1 + (qTq - iT* - *T<! + - c2), (.s) 

Broyden22 and Goldfarb23 

"F1 = HT-\ + [d + c2/Ci) qTq - qTz - zTq]/Cl , (4) 

and Hoshino24 

Hf 1 = H7_\ + [(1 + 2c2/cj) qTq - qTz - zTq - zTz]/(c1 + c2) . (5) 

The starting H _ 1 matrix is chosen as the unit matrix, the choice of a is done by quadratic or 
cubic minimization in a given direction (vide infra). 

Choice of the Optimal Numerical Procedure for Geometry Optimization 

Since the to t a l energy is c o m p u t e d in semiempir ica l m e t h o d s in an i terat ive way, 
it is conven ien t t o p e r f o r m the S C F i terat ive p r o c e d u r e s imul taneous ly with the 
geomet ry op t imiza t ion . A simplif ied a lgor i thm f o r such a ca lcu la t ion can be wri t ten 
as fo l lows: 

a) P roceed in the S C F i terat ive p r o c e d u r e at the p o i n t Xj _ t unt i l the convergency 
cr i ter ion is less t h a n an a priori given value, say e. b) P e r f o r m a s t ep acco rd ing to E q . 
(l). c) P e r f o r m the stabil i ty tests (v ide infra). If the tests a re n o t satisfied, reset the 
H r _ \ m a t r i x a n d con t inue wi th a), d) U p d a t e the H f 1 m a t r i x acco rd ing to any 
of Eqs (2) —(5). e) If the n o r m of g rad ien t is h igher t h a n a prescr ibed value, say S, go 
back to a) . If necessary, lower s in the next ca lcula t ion step. 

The va lue of a was chosen in a fo l lowing way. T h e grad ien t g w a s c o m p u t e d 
a t the p o i n t x - ^ which lies in the vicinity of the p o i n t x ^ in the d i rec t ion given 
by Tgi-1. O n deno t ing r = x - _ x — xi_1 we a r r i v e 2 4 at 

* = rWC'1*:-! (6) 

The stabil i ty tests requi re t h a t the d e n o m i n a t o r s in E q s (2) —(5) be nonvan i sh ing 
a n d the f u n c t i o n va lue be lower a t the po in t xi t h a n at x ^ . I n ac tua l ca lcu la t ions 
the m e t h o d s cons idered p r o v e d to have rough ly equivalent meri ts . N o c o m p u t a t i o n 
has ten ing was f o u n d even if a va lue of a was searched fo r by the min imiza t ion of a cu-
bic func t ion , i.e. by m e a n s of g rad ien t s c o m p u t e d a t t w o po in t s of the same dis tance 
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from x , - . ! in directions (HlZ.\)Tgi-1 and A considerable reduction 
of the computer time, however, was achieved by exploating the claim of ref.21 , 
proved later in ref.25 , that the Murtagh-Sargent method is quadratically convergent 
for any a. For a = 1 the number of variable metric iterations increased insignificantly. 
Now, however, the computation of gradients at x'(_ x points is not necessary any longer 
which implies half reduction in the number of SCF iterations and, consequently, 
in the computer time. This method, without the use of the double iteration technique, 
was applied10 to geometry optimizations by mean of EHT and MINDO/2 methods. 
It proved the most effective in the whole family of variable metric methods. An at-
tempt reported25 to improve it has been met with limited success. 

On the basis of the author's experience with the minimization procedure, the fol-
lowing supplementary specification to the algorithm can be recommended. 

a) Optimal e is 0-05 eV; if the trial geometry is close to the optimal geometry, 
the use of a lower s is preferable ( 1 0 - 2 — 10~4 eV). b) The procedure may diverge, 
if a shift given by Eq. (1) is too large. If [q T q] 1 / 2 is greater than an a priori fixed 
/? (0-1 A) is optimal), a is so reset that the shift be equal to /?. Thus 

and the calculation is iterated back to step a), c) In each optimization step it is 
necessary to check if 1) zTgi_1jc2 < y, 2) |c2\ ^ Szrz, and 3) gjq < gj-iq. In the 
program we fixed y at 1 0 " 5 and S at 10" 6 . I f conditions 2) and 3) are not satisfied, 
the H: _ i matrix must be reset by starting Hx and the calculation is iterated back 
to a). (Reset 2 recommended in ref.21 did not prove useful, it brings about divergency 
in many cases). If the condition 3) is not satisfied, it is necessary to carry out the 
minimization step according to Eq. (6), where x'i_l — x ; , and to make use of new x ; 

in steps d) and e). It is convenient to select such a H f 1 matrix whose i, j element is 
given by ( H j 1) i j = £<5jj, where <5̂ - is the Kronecker delta; the optimal £ is 5 . 1 0 - 3 A 2 

e V - 1 . d) HJ"1 matrix was updated according to Eq. (3). e) Selected values for S 
were 10~4(eV/A)2 with molecules up to 5 — 7 atoms and 10~1 —10" 2 with larger 
molecules. The limited computer precision rules out too low <5. 

« = Min { 1 0 , P [ { ( H r - ' 1 ) T « i - . } T { ( H i - l ) T « . - . } ] - 1 ' 2 } (7) 

H H 
H H A / , 

c X 
V V /% 
H H H H 

Propane Methylamine Methanol 

F I G . 1 

Bond Labelling in Propane, Methylamine and Methanol 
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T A B L E I 

Comparison of Equilibrium Geometries Given by Semiempirical Methods" 

Parameter6 CNDO/2 INDO MINDO/2 c Exp.d 

Propane 

a 1-121 1-123 1-210 1-098 
b 1120 1-123 1-212 1-098 
c 1-126 1-129 1-221 1-096 
d 1-466 1-468 1-498 1-534 

Angle ab 106-25 106-08 104-46 107-9 
Angle bb 106-54 106-37 104-72 107-9 
Angle cc 104-23 104-06 101-55 107-8 
Angle dd 113-80 113-79 116-28 1120 
Symmetry c2v 

C2„ c2v 

Methylamine 

a 1-122 1-126 1-211 1-093 
b 1-121 1-123 1-209 1-093 
c 1-071 1-072 1-113 1-011 
d 1-405 1-402 1-414 1-474 

Angle ab 107-14 106-78 107-36 109-47 
Angle bb 107-40 107-72 107-38 109-47 
Angle cc 104-12 106-23 115-16 105-9 
Angle cd 107-72 111-47 122-38 112-1 

ye 2-16 2-12 0-25 3-5 
Symmetry C5 cs 

Methanol 

a 1-120 1-122 1-234 1-096 
b 1-120 1-124 1-234 1-096 
c 1-033 1-037 1-100 0-956 
d 1-368 1-368 1-324 1-427 

Angle ab 108-25 108-38 102-41 109-00 
Angle bb 108-18 107-91 102-41 109 00 
Angle cd 105-23 107-70 18000 108-36 

ye 2 1 5 2-17 0-00 3-34 
Symmetry cs c3v 

a Bonds in A, angles in degrees; b For designation of bonds see Fig. 1; c The C—H, N—H and 
O—H bond lengths are not corrected for the offsets; d Experimental geometries for propane and 
methylamine are taken from ref .2 8 , those for methanol from ref.2 9 ; e Angle between the axis of 
the CH 3 group and the C—N or C—O bond. 
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Hessian Matrix Calculation and Vibrational Analysis 

The program is similar to programs of Mclver and Komornicki26 and Pulay15. 
The columns of the Hessian matrix were calculated by means of the relationship 

Hi=(g1-g-1)/25, (8) 

where g1 and g _ 1 are gradients at the points whose i-th coordinates are shifted 
by s and —5 with respect to the trial geometry. The optimal 5 is 5 . 10"3 A . The use 
of the computed Hessian matrix in the program is twofold. It is used in searching 
for a stationary point by the Raphson-Newton method and in the Wilson vibrational 
analysis for the determination of modes of vibrations.* The Raphson-Newton method 
is particularly well suited for geometry calculations of saddle points. With regard 
to equilibrium geometries, the computation time for a single step is roughly ten times 
longer than the computation time necessary for a complete minimization by the 
variable metric method. The geometry optimization by this method is warranted 
only for molecules with a torsional motion which corresponds to an almost free 
rotation. In such a case variable metric methods are not very effective. 

The principle merit of the program is its capability of deciding whether an energy 
"minimum"' given by the variable metric method is a minimum indeed or merely 
a saddle point. In the latter case, the eigenvectors of the Hessian matrix give us a guide 
as to what trial geometry must be selected for obtaining the true minimum by means 
of the variable metric method. Details on this problem will be discussed in subsequent 
papers. 

RESULTS 

As noted above the results of calculations will be given in subsequent more chemically 
oriented papers. To illustrate the possibilities of the method we present here some 
results taken from the study of Slanina and Berak27. Table I comprises geometry 
parameters of propane, methylamine and methanol, the entries of Table II are the 
normal modes of vibrations of formaldehyde. The calculation of the equilibrium 
geometry of propane lasts about 20 minutes on a medium-sized computer of the 
IBM 370/135 type, the geometry calculation of methylamine and methanol about 
10 minutes. As a starting geometry the "idealized" geometry was chosen assuming 
all bond angles and CH, NH, OH, CC, CN, CO bond lengths to be 110°, 1-1, 1-1, 
IT, 1-4, 1-3 and 1-2 A, respectively. The calculation of the vibrational modes of for-

* This part of the program was made under cooperation with Dr Z. Slanina. His assistance 
is gratefully acknowledged. 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 40] [1975] 



""Equilibrium Geometry and Vibrational Characteristics Computations 2731 

maldehyde lasted 8 minutes on the same computer. This sort of data can be exploited 
both for calculations of equilibrium constants and estimations of reaction coordinates. 
This will be shown in subsequent papers. 

TABLE I I 

Comparison of Vibrational Wavenumbers for Formaldehyde Given by Semiempirical Methods0 

Symmetry Mode C N D O / 2 I N D O M I N D O / 2 Exp.b 

b2 C H 2 wag 1 240 1 239 1 016 1 164 
by C H 2 rock 1 245 1 250 1 064 1 247 
al C H 2 scissors 1 611 1 629 1 241 1 501 
al CO stretch 2 845 2 808 2 035 1 766 
al C H 2 sym. stretch 4 599 4 568 2 942 2 766 

h C H 2 anti. stretch 4 666 4 625 3 014 2 843 

a All entries in cm 1 ; b Taken f rom re f . 3 0 . 

The author is indebted to Dr R. Zahradnik for valuable comments, advices and for his interest 
held during the course of the work. The author also wishes to thank Drs Z. Slanina and P. Berak for 
communicating their unpublished results. 
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